

OpenLI Components OpenLI Training: Chapter Four

Shane Alcock University of Waikato New Zealand shane.alcock@waikato.ac.nz

Introducing OpenLI

- Open Source software for lawful intercept
 - Compliant with ETSI standards
 - Runs on x86 Linux
 - Runs on off-the-shelf computing hardware
 - o GPLv3
 - Actively developed and maintained
 - Multiple successful deployments

The Components

• Provisioner

• Collectors

• Mediator

Provisioner

- Central controller for the entire system
 - Implements the "administration function"
- Used by authorised personnel to start/stop intercepts
 Also configure other aspects of OpenLI system
- Provides a REST API for intercept configuration

Provisioner

- Low workload
 - Can easily be run in a small VM or container
- Must be able to talk to all other OpenLI components
- Should *not* be accessible from off-network
- Access should be strictly limited to approved persons only
 REST API supports authentication via API keys and digest auth

- Collectors do the bulk of the work in an OpenLI deployment
 - Listen for instructions from the provisioner
 - Capture packets
 - Track user sessions using AAA traffic
 - Decide which packets to intercept
 - Encode intercepted packets into ETSI IRIs and CCs
 - Forward IRIs and CCs to mediators

- Packet Capture
 - Multiple capture interfaces are supported
 - Choose appropriate capture methods for your workload
 - See previous lesson for more info
 - Try to be smart about reducing packet rate
 - Use BPF filters for coarse filtering
 - Upstream filtering is better, but not always straightforward

- Tracking user sessions -- RADIUS example
 - Operators pre-configure RADIUS servers via provisioner
 - RADIUS traffic is parsed separately by the collector
 - Maintains state table of all active users and their IP addresses
 - This is used to decide whether a packet should be intercepted
 - A collector must see all relevant RADIUS traffic

- Deciding to intercept -- RADIUS example
 - IP addresses of captured packets are inspected
 - If match the address of an active intercept target: intercept
 - Otherwise: ignore

- Encoding intercepted packets
 - ETSI standards specify formatting using ASN.1 / BER encoding
 - Encoding is computationally expensive (relatively)
 - Wrote our own encoding/decoding library (libwandder)

- Other requirements
 - Sequencing of ETSI records for each intercept
 - Consistency between IRIs and CCs for same intercept

- Forwarding to mediators
 - Try to ensure records are sent in sequential order
 - Buffer records if mediator is unreachable
 - Support use of RabbitMQ for buffer management
 - Otherwise, simple in-memory buffering is used

Deploying Collectors

- Distribute collectors throughout your network
 - Suggest one per BNG / customer aggregation point
 - Ensure collector gets AAA feed for all those users
 - For VOIP, mirror both SIP and RTP traffic

Collectors -- Choosing Hardware

• Bare metal is best, but a VM will usually suffice

- More CPU cores is better
 - Packet capture: 10Gbps \Rightarrow 8+ CPU cores
 - Encoding: 10Gbps \Rightarrow 4+ CPU cores
 - Sequencing, forwarding, session tracking \Rightarrow 4 CPU cores

Collectors -- Choosing Hardware

- NICs and packet capture hardware
 - 1 high performance NIC supporting DPDK and/or XDP
 - Plus 1 standard 4-port NIC for management, AAA capture

• Memory: 16 GB recommended

- Disk
 - No special requirements, just enough for buffering
 - SSD optional

- Security
 - Absolutely **NO** off-network access
 - Only permit login for administrative purposes

Mediators

- Mediators implement the handovers to the LEAs
 - Maintain mappings of active intercepts to their destination LEA
 - Establish and maintain HI2 and HI3 TCP sessions
 - Receive encoded ETSI records from collectors
 - Buffer, then forward ETSI records via handovers

Mediators

- Handover TCP sessions
 - Established over an encrypted tunnel, e.g. IPSec
 - Your LEA(s) will provide instructions on tunnel configuration
 - Sessions stay up even when no active intercepts
 - Your mediator will always initiate the TCP connection

Mediators

- Security
 - Needs to be able to make outbound connections to the LEAs
 - via public Internet
 - No inbound connections from external parties, though
 - Firewall any connection attempts from outside
 - As usual, login should only be required for administration

Mediators -- Choosing Hardware

- Memory
 - To buffer intercepts if handovers fail
 - Minimum 16GB, 32GB+ recommended

- Networking
 - Capacity to receive peak concurrent intercept traffic
 - Capacity to forward peak concurrent intercept traffic
 - Example, 2 10Gb interfaces + a management interface

Mediators -- Choosing Hardware

- CPU is unlikely to be a significant bottleneck
 - Allow 8+ cores just to be safe
 - Should be fine to run inside a VM or container

You can run multiple mediators if required
 Confirm with your LEAs that they are happy to support this

A Typical Deployment -- High Level

Security Domain Perspective

Next Time

• Installing and maintaining OpenLI